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Abstract

Following in the spirit of data structure and algorithm correctness checking, authenticated data
structures provide cryptographic proofs that their answers are as accurate as the author intended, even
if the data structure is being maintained by a remote host. We present techniques for authenticating
data structures that represent graphs and collection of geometric objects. We use a model where a
data structure maintained by a trusted source is mirrored at distributed directories, with the directories
answering queries made by users. When a user queries a directory, it receives a cryptographic proof
in addition to the answer, where the proof contains statements signed by the source. The user verifies
the proof trusting only the statements signed by the source. We show how to efficiently authenticate
data structures for fundamental problems on networks, such as path and connectivity queries, and on
geometric objects, such as intersection and containment queries.

1 Introduction
Verifying information that at first appears authentic is an often neglected task in data structure and

algorithm usage. Fortunately, there is a growing literature on correctness checking that aims to rectify
this omission. Following early work on program checking and certification [2, 29, 30], several researchers
have developed efficient schemes for checking the results of various data structures [3, 5, 4, 14, 22], graph
algorithms [18, 20], and geometric algorithms [11, 23]. These schemes are directed mainly at defending the
user against an inadvertent error made during implementation. In addition, these previous approaches have
primarily assumed that usage is limited to a single user on an individual machine.

With the advent of Web services and Internet computing, data structures and algorithms are no longer
being used just by a single user on an individual machine. Indeed, with the development of content distribu-
tion services (e.g., Akamai) spreading content across the Internet, the machine responding to a user’s query
could be unknown to both the data structure author and its user. Bringing the lessons of recent world events
into the domain of algorithmics, we must recognize that, although they benefit efficiency, such scenarios open
the possibility that an agent hosting a data structure or algorithm could deliberately falsify query responses
to users. If the information represented in a response has security or financial implications, such falsification
could cause significant adverse consequences.

In this paper we are interested in studying a new dimension in data structure and algorithm checking—
how can we design data structures and algorithms so that their responses can be verified as accurately as if
they were coming from their author, even when the response is coming from an untrusted host? Examples of
the kind of information we want to authenticate include dynamic documents, online catalog entries, and the
responses to queries in geographic information systems, financial databases, medical information systems,
and scientific databases. Digital signatures can be used to verify simple static documents, but are inefficient
for dynamic data structures. We therefore need new techniques for authenticating data structures.

1.1 A Model for Authenticated Data Structures
Our data structure authentication model involves three parties: a trusted source, an untrusted directory,

and a user. The source holds a structured collection S of objects, where we assume that a set of query
operations are defined over S. If S is fixed over time, we say that it is static. Otherwise, we say that S is
dynamic and assume that a set of update operations are defined that modify S. The directory maintains
a copy of the collection S together with structure authentication information, which consists of statements
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about S signed by the source. The user performs queries on S but instead of contacting the source directly,
it queries a directory. The directory provides the user with an answer to the query together with answer
authentication information, which yields a cryptographic proof of the answer. The answer authentication
information should include a time stamp and information derived from signed statements in the structure
authentication information. The user then verifies the proof relying solely on the time stamp and the
information derived from statements signed by the source (subject to standard cryptographic assumptions).

The data structures used by the source and the directory to store collection S, together with the protocols
and algorithms for queries, updates, and verifications executed by the various parties, form what we call an
authenticated data structure [15, 21, 26]. In a practical deployment of an authenticated data structure, there
would be various instances of geographically distributed directories. Such a distribution scheme reduces
latency, allows for load balancing, and reduces the risk from denial-of-service attacks.

1.2 Previous Work
Previous work related to authenticated dictionaries is mostly concerned with authenticated dictionaries,

which are authenticated structures for sets on which membership queries are performed.
The hash tree scheme introduced by Merkle [24, 25] can be used to implement a static authenticated

dictionary. A hash tree T for a set S stores hashes of the elements of S at the leaves of T and a value L(v) at
each internal node v, which is the result of computing a one-way hash function on the values of its children.
The authenticated dictionary for S consists of the hash tree T plus the signature of the value L(r) stored
of the root r of T . An element e is proven to belong to S by reporting the values stored at the nodes on
the path in T from the node storing e to the root, together with the values of all nodes that have siblings
on this path. With this approach, space is linear, and the query authentication information and the query
and verification time are logarithmic in the size of the set S. Kocher [19] also advocates a static hash tree
approach for realizing an authenticated dictionary, but simplifies somewhat the processing done by the user
to verify that an item is not in the set S, by storing intervals instead of individual elements.

Using techniques from incremental cryptography, Naor and Nissim [26] dynamize hash trees to support
the insertion and deletion of elements in logarithmic time, thus implementing a dynamic authenticated
dictionary. In their scheme, the source and the directory maintain identically-implemented 2–3 trees. The
update authentication information has O(1) size and the query authentication information has logarithmic
size.

Goodrich and Tamassia [15] present a data structure for an authenticated dictionary based on skip
lists [27]. They introduce the notion of commutative hashing and show how to embed in the nodes of a skip
list a computational DAG (directed acyclic graph) of cryptographic computations based on commutative
hashing. This data structure matches the asymptotic performance of the Naor-Nissim approach [26], while
simplifying the details of an actual implementation of a dynamic authenticated dictionary. In related works,
Goodrich, Tamassia and Schwerin [17] present the software architecture and implementation of an authenti-
cated dictionary based on the above approach and Anagnostopoulos, Goodrich and Tamassia [1] introduce
the notion of persistent authenticated dictionaries, where the user can issue historical queries of the type
“was element e in set S at time t”.

Goodrich, Tamassia and Hasic [16] show how to use the RSA one-way accumulator to realize a dynamic
authenticated dictionary for a set with n elements with O(1) query authentication information size and
verification time. Their scheme allows a tradeoff between the query and update times. For example, one
can balance the two times and achieve O(

√
n) query and update time and O(

√
n) update authentication

information.
A first step towards the the design of more general authenticated data structures (beyond dictionaries)

is made by Devanbu et al. [10]. Using an extension of hash trees, they show how to authenticate operations
select, project and join in a relational database. Moreover, they present an authenticated data structure
for a set of multidimensional points that supports orthogonal range queries. This latter result goes beyond
simple authenticated dictionaries, but it is restricted to hashing in range trees.

Recently, Martel at al. [21] have initiated work that begins a study of authenticated queries beyond tree
structures and skip lists. They consider the class of data structures such that (i) the links of the structure
form a directed acyclic graph G of bounded degree and with a single source node; and (ii) queries on the data
structure correspond to a traversal of a subdigraph of G starting at the source. They show that such data
structures can be authenticated by means of a hashing scheme that digests the entire digraph G into a hash

2



www.manaraa.com

value at its source. With this scheme, the size of the answer authentication information and the verification
time are proportional to the size of the subdigraph traversed. They show how this general technique can be
applied to the design of static authenticated data structures for pattern matching in tries and for orthogonal
range searching in a multidimensional set of points. The also begin an initial treatment of authenticating
fractional cascading structures, but only for range tree data structures, where catalogues are arranged as
unions in a tree. Related work on the authentication of XML documents by Devanbu et al. appears in [9].

1.3 Our Results
In this paper we present general techniques for building authenticated data structures for a number of

non-trivial query problems for a general graph G, including the following:
• areConnected(v, w): Are v and w in same connected component?
• areBiconnected(v, w): Are v and w in same biconnected component?
• areTriconneced(v, w): Are v and w in same triconnected component?
• path(v, w): Return a path from v to w.
• pathLength(v, w): Return the length of a path from v to w.

We also support efficient update operations that involve inserting vertices and edges in G. Our data structure
uses linear space and supports connectivity queries and update operations in O(log n) time and path queries
in O(log n+ k) time, where k is the length of the path reported. The update authentication information has
O(1) size. The size of the answer authentication information and the verification time are each O(log n) for
connectivity, biconnectivity and triconnectivity queries and O(log n + k) for path queries.

In addition, we address several geometric search problems, showing how to authenticate the full, general
version of the powerful fractional cascading technique [6]. Namely, we can authenticate any query efficiently
answered in a fractional-cascading structure via iterative search, where we have a collection of k dictionaries
of total size n stored at nodes in a graph and we want to search for an element in each dictionary in a
path in this graph. A number of fundamental two-dimensional geometric searching problems arising in the
implementation of geographic information systems can be solved with data structures based on this iterative
search approach [7]. These problems include:

• line intersection queries on a polygon P , to report the edges of P intersected by a query line
• ray shooting queries on a polygon P , to report the first edge of P intersected by a query ray;
• point location on a planar subdivision, to report the region containing a query point
• orthogonal range search on a set of points in R2, to report the points inside a query rectangle
• orthogonal point enclosure on a set of rectangles, to report the rectangles that contain a query point
• orthogonal intersection queries on a set of rectangles, to report the rectangles intersected by a query

rectangle.
We show that our authenticated fractional cascading data structure can be extended to yield efficient au-
thenticated data structures for all the above problems. We are unaware of previously known authenticated
data structures for the above problems, with the exception of orthogonal range search, for which an authen-
ticated data structure was given in [21]. The security of our scheme is based on standard cryptographic
primitives, such as one-way hashing and digital signatures; hence, it is practical and does not need any new
cryptographic assumptions. We leave open the problem of the dynamization of our authenticated geometric
search structures based on fractional cascading.

2 Cryptographic Preliminaries
In this section, we present the general cryptographic technique that used in our authenticated data

structures.
The basis of trust in our authentication model is the assumption that the user trusts the source. This is

expressed by means of a digital signature scheme. Moreover, all the desired security results are achieved by
means of the use of a cryptographic hash function. A cryptographic hash function h typically operates on a
variable-length message M producing a fixed-length hash value h(M). We assume some well-defined binary
representation for any data element e, so that h can operate on e. Also, we assume that rules have been
defined so that h can operate over any number of elements. A cryptographic hash function h is a collision-
resistant hash function, if, given the value h(x), it is computationally intractable to find x and, moreover, if,
given y, it is computationally intractable to find y 6= x with h(y) = h(x). The collision resistance property
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will be used for our security results.
Let S be a data set owned by the source. In our authentication schemes, a collision-resistant hash

function is used to produce a digest, i.e., a cryptographic hash value over the data elements of S. The
digest is computed in a systematic way which can be expressed by means of directed acyclic graph (DAG)
defined over S (similar technique is presented in [21]). We define a single-sink DAG G associated with S as
follows. Each node u of G stores a label L(u) such that if u is a source of G, then L(u) = h(e1, . . . , em),
where e1, . . . , em are elements of S, else (u is not a source of G) L(u) = h(e1, . . . , en, L(z1), . . . , L(zk)), where
(z1, w), . . . , (zk, w) are edges of G and e1, . . . , en are elements of S. We view the label L(t) of the sink t of
G as the digest of S, which is computed via the above DAG G.

We call the above scheme as hashing scheme of S using G. The answer to a query usually involves some
elements. Then, the proof typically consists of the signed digest and all the information (labels of G) that
is necessary for the recomputation by the user of this digest.

The authentication techniques presented in this paper are based on the following general scheme. The
source and the directory store identical copies of the data structure representing S and maintain the same
hashing scheme on S. The source periodically signs the digest of S together with a timestamp and sends the
signed timestamped digest to the directory. When the user poses a query, the directory returns to the user
(1) the signed timestamped digest of S, (2) the answer to the query and (3) a proof consisting of a small
collection of labels from the hashing scheme that allows the recomputation of the digest. The user validates
the answer by recomputing the digest, checking that it is equal to the signed one and verifying the signature
of the digest.

3 Path Properties
In this section, we present an authenticated scheme for various types of queries on a sequence.

3.1 Path Hash Accumulator
An abstract notion of a path is used to represent S. We use and extend notation used in [8].
A path is an ordered sequence of one or more nodes. By head(p) and tail(p) we denote the first and last

nodes of a path p. If p′ and p′′ are paths, the concatenation p = p′ | p′′ is a path formed by adding a directed
edge from tail(p′) to head(p′′). A subpath p̄(v, u) = p̄ of a path p is the path consisting from the collection
of concecutive nodes of p v, w1, . . . , wl, u, with head(p̄) = v and tail(p̄) = u.

A path stores a data set through node attributes, which are values stored at nodes, and node properties
which are collections of node attributes. A node attribute N(v) of node v can assume arbitrary values and
occupies O(1) storage. A node property N (v) is a sequence N1(v), . . . , Nr(v) of node attributes, where r is
a constant. Similarly, path attribute and path property are defined to extended the notion of node attribute
and node property. P (p) is the path attribute of p; it occupies only O(1) storage and depends on the values
N(v) for every node v of p and on the order of nodes of p. P(p) = {P1(p), . . . , Ps(p)} is the path property
of p, which is a sequence of path attributes P1, . . . , Ps, where s is a constant. Also, we require that P(p)
includes path attributes head(p), tail(p). The definition of path attribute and path property are naturally
extended when subpaths of paths are considered.

Let p = p′ | p′′ be a path that is the concatenation of paths p′ and p′′. A path property P satisfies the
concatenation criterion if P(p) =F(P(p′),P(p′′)), where F is a function that can be computed in O(1) time
that is called the concatenation function of P .

Given a path p and a query argument q, a node selection query QN maps p into a node v = QN(p, q) of p.
A node selection query is always associated with some path selection function. Given that p = p′ | p′′, a path
selection function σ(p, q) for QN determines in O(1) time whether v is in p′ or p′′ using q and values P(p′)
and P(p′′). A path selection query extends a node selection query using a path advance function. Given a
path p and some query argument q, a path selection query QP maps p into a subpath p̄ = QP (p, q) of p.
A path selection query is characterized by a path advance function. Given that p = p′ | p′′, a path advance
function α(p, q) for QP returns in O(1) time the subpath(s) among p′, p′′ (possibly none) for which the query
argument q holds (values P(p′) and P(p′′) are used by the path advance function).

Let p be a path. We are interested in authenticating the following operations:
• property(subpath p̄(v, u))–report the value of path property P for subpath p̄(v, u) of p (p̄ may be p).

The path property P satisfies the concatenation criterion.
• property(node v)–report the value of node property P for node v.
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• locate(path p, path selection function σ, argument q)–find node v of p returned by the node selection
query that corresponds to the path selection function σ.

• subpath(path p, path advance function σ, argument q)–find the subpath of p returned by the path
selection query expressed by the path advance function σ.

We represent a path p with a balanced binary tree T (p) as follows. A leaf of T (p) represents a node of
p. An internal node v of T (p) represents the subpath p(v) of p associated with the leaves in the subtree of
v. Each leaf stores the corresponding node property and each non leaf node stores the corresponding path
property.

Let h be a collission resistant hash function. The path hash accumulator for a path p is the hashing
scheme over the node and path properties of p defined as follows. Consider the data set consisting of:
(1) for each leaf node v of T (p), the node property N (v) and (2) for each internal node u of T (p), the
path property P(p(u)). Let G be the DAG obtained from T (p) by directing each edge toward the parent
node. For a node v of p, let pred(v) and succ(v) respectively denote the predecessor and the successor of
v in p. In particular, pred(head(p)) and succ(tail(p)) are some special (nil) values. Using G and h, we
compute a label L for each node of T (p) as follows: (1) if u is a source vertex of G, i.e., a leaf of T (p), then
L(u) = h(N (pred(u)),N (u),N (succ(u))); (2) if w is a non source vertex of G and (z1, w) and (z2, w) are
edges of G, then L(w) = h(P(w), L(z1), L(z2)). The digest of of the above data set is the label L(r) of the
sink r of G (r is the root of T (p)). This digest is called the path hash accumulation of path p.
Lemma 1 Let p be a path of length n. There exists an authenticated data structure for p based on the path
hash accumulator scheme with the following performance:

• query operations property(v), property(p), locate and subpath take each O(log n) time;
• the update authentication information has size O(1);
• the answer authentication information size and the answer verification time are each O(log n).

4 Authenticated Graph Searching
In this section, we consider authenticated data structures for graph searching problems. We first develop

a generic authenticated data structure for a forest of trees and then consider general graphs.

4.1 Tree of Paths
We develop an efficient and fully dynamic authenticated data structure that supports path property

queries in a forest of trees. The data structure has fast, update, query, and validation times.
We use the path hash accumulator authentication scheme over a collection Π of paths that are maintained

through the update operations on paths: split and concatenate. At a high level point of view, Π is organized
by means of a rooted tree T of paths, meaning that each node of T corresponds to a path p ∈Π. Neighboring
paths in T are generally interconnected and share information. This is achieved by the definition of suitable
node attributes and properties.

A tree of paths T is considered to be directed; the direction of an edge is from a child to a parent. Let
µ be a node of T , let µ1, . . . , µk be its children in T and let p be the path that corresponds to µ. A node
attribute N(v) of a node v of p is extended so that it depends not only on v but possibly also on some path
properties of the paths that correspond to nodes µ1, . . . , µk of T . We say that path p is the parent path of
paths µ1, . . . , µk and these paths are the children paths of p. Clearly, this extension makes the path property
P(p) of path p that correspond to node µ to include information about paths in the subtree of T having as
root node µ. We again consider path properties that satisfy the concatenation criterion.

The idea above can be generally extended using a directed acyclic graph as the high level graph for the
organization of a path collection Π. Using such a graph we introduce a hierarchy over paths in Π. Path
properties are thus extended to include information about other paths according to the underlying hierarchy.

4.2 Path Properties in a Forest
We now present the construction of our data structure that supports path property queries on a forest.
Let F be a forest of trees. F is associated with a data set by storing at each tree node a node attribute.

Using the framework presented in Section 3.1, any path in F is associated with some path property P .
We assume that P satisfies the concatenation criterion. We study the implementation of the authenticated
query operation property(u, v)–return the path property of the path from u, v, if such a path exists, while
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the following update operations over trees of F are performed:
• destroyTree(w) - Destroys the tree with root w;
• newTree() - Creates a new tree in F that consists of a new, single node;
• link(u, v) - Merge two trees by adding an edge from the root u of some tree to a leaf v of another tree;
• cut(u) - Separate a tree by removing the edge from non-root node u to its parent.

Note that any tree can be assembled or disassembled using these operations.
Our data structure is based on dynamic trees of [28]. A dynamic tree T is a rooted tree whose edges

are classified as being either solid or dashed, with the property that any internal node has at most one child
connected by a solid edge. This edge classification partitions the nodes of the tree into solid paths connected
with each other by dashed edges (see Figure 1(a)). We view a solid path as directed toward the root of T .

T1 T2
F

T (2)T (1)

dashed

root

solid

(a) (b)

Figure 1: (a) The partition of trees into solid paths. (b) Trees of paths and the final tree F .

Every non leaf node v of T has at most one child u0 such that a solid edge connects them. Assume that v
has more children. Consider all such children, say nodes u1, . . . , uk in T (that are connected with v through
dashed edges). The dashed path p = d(v) is an abstract path of length k, so that that there is one to one
correspondence between edges (ui, v) in T and nodes of p.

Let T1, . . . , Tm be all trees in F . Let Π(Ti) be the collection of all solid and dashed paths defined for tree
Ti of F as explained above. Using the hierarchical path scheme discussed in Section 4.1, we can associate
Π(Ti) with a directed tree T (i) of paths. This is performed as follows:

• Each path p (solid or dashed) in Π(Ti) corresponds to a vertex µp of T (i);
• if p is solid, for each node v of p that has only one child u in Ti such that u is node of path p′ and

p 6= p′ (and is connected with it through a dashed edge), the directed edge (µp′),µp) is edge of T (i);
• if p′ = d(v) is dashed with length k, that is, p′ corresponds to the dashed edges of a node v in Ti, let p

be the solid path that v belongs, let u1, . . . , uk be the corresponding children of v in T , and p1, . . . , pk

the solid paths containing these children. Then, directed edges (µp′ ,µp), (µpi ,µp′), 1 ≤ i ≤ k are edges
of T (i).

Given all directed trees T (i), we add a new root node ω that connects all the roots of trees T (i), thus,
obtaining a new tree F . We consider one last root path π(ω) that corresponds to ω: nodes of that path
correspond to trees Tis of F . Any node ordering in π(ω) can be used.

Consider the collection of paths Π(F ) associated with the nodes of tree F . The children of the root path
π(ω) are solid paths. The children of a solid path are either solid of dashed paths. The children of a dashed
path are solid paths. Figure 1(b) shows such a tree F .

Using this path tree, we implement our data structure as follows. Each path (root, solid or dashed) is
implemented through the path hash accumulator authentication scheme. The individual data structure that
implements each path is chosen to be biased binary tree. A path property P , a collection of path attributes,
that satisfies the concatenation criterion is defined. By the implicit path interconnection, through the idea
of setting path properties as node attributes, P(p) is able to include information about the children paths
of p. We include path attributes in node properties, as follows. Let v is a node of path p and L(p) denote
the path hash accumulation of path p.
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1. p is root path or dashed path: L(p′), tail(p′) are included in N (v), where p′ is the child solid path
corresponding to node v.

2. p is solid path: L(p′), tail(p′) are included in N (v), if v corresponds to a solid child path p, or L(p′) is
included in N (v), if v corresponds to a dashed child path p′.

The above scheme yields a digest for the forest F consisting of the path hash accumulation of the root
path π(ω) of F . We can prove the following theorem:
Theorem 2 Given a forest F with n nodes, there exists a fully dynamic authenticated data structure that
supports path property queries with the following performance, (i) operations destroyTree and newTree take
O(1) time; operations link and cut take each O(log n) time; operation property takes O(log n) time; (ii) the
query authentication information for operation property has size O(log n); (iii) the update authentication
information is O(1); (iv) the query verification time for operation property is O(log n); (v) the total space
used is O(n).

Theorem 2 gives an authenticated data structure to answer path (reports the path, if any, connecting
two nodes in F ), areConnected (answers the question “is there a path between two nodes?”), pathLength
(reports the length of the path, if any, between two nodes) and includesNodeType (answers the question “is
there node of specific type in the path, if any, between two nodes?”) queries on a dynamic forest of trees.
Theorem 3 Given a forest F with n nodes, there exists a fully dynamic authenticated data structure that
supports path and connectivity queries with the following performance, where k is the length of the path
returned by operation path(): (i) operations destroyTree and newTree take O(1) time; operations link and cut
take each O(log n) time; operations areConnected, pathLength, includesNodeType take each O(log n) time;
operation path takes O(log n+k) time; (ii) the query authentication information for operations areConnected,
pathLength, includesNodeType has size O(log n) and for operation path() has size O(log n + k); (iii) the
update authentication information is O(1); and (iv) the query verification time for operations areConnected(),
pathLength, type is O(log n) and for operation path() is O(log n + k).

In the next subsections, we show how this result can be extended to give us authenticated schemes for
more advanced graph queries.

4.3 Authenticated Path and Connectivity Queries
We can apply Theorem 3 to design an authenticated data structure for path and connectivity queries in

an graph that evolves through vertex and edge insertions with similar performance bounds. The main idea
is to maintain a spanning forest of the graph. For embedded planar graphs, we can also support deletions
using the data structure described in [13].
Theorem 4 There exists an authenticated data structure for connectivity and path queries in a graph with
n vertices that uses O(n) space. A connectivity query takes O(log n) time and a path query takes O(log n +
k) time, where k is the length of the path returned. Also, the answer verification information has size
proportional to the query time. For a general graph, insertions are supported in O(log n) time each. For an
embedded planar graph, insertions and deletions are supported in O(log n) time each.

4.4 Authenticated Biconnectivity Queries
Let G be a graph that is maintained through operations: makeVertex(v) (create a new vertex v) and

insertEdge(u, v, e) (add edge e between vertices u and v in G). We are interested in authenticating query
operation areBiconnected(u, v) that determines whether u and v are in the same biconnected component.

We extend the data structure of [31]. We maintain the block-cutvertex forest B of G. Each tree T in B
corresponds to a connected component of G. There are two types of nodes in T : block nodes that correspond
to blocks (biconnected components) of G and vertex nodes that correspond to vertices of G. Each edge of T
connects a vertex node to a block node. The block node associated with a block B is adjacent to the vertex
nodes associated with the vertices of B. We have that two vertices u and v of G are in the same biconnected
component if and only if there is a path between the vertex nodes of B associated with u and v and this
path has length two. Thus, operation areBiconnected in G is reduced to operation pathLength in B.
Theorem 5 Given a graph G with n vertices, there exists a dynamic authenticated data structure for bi-
connectivity queries on G with the following performance: (i) query operation areBiconnected takes O(log n)
time, update operation makeVertex takes O(1) time and update operation insertEdge takes O(log n) amortized

7



www.manaraa.com

time; (ii) the query authentication information has size O(log n); (iii) the update authentication information
has size O(1); and (iv) the query verification time is O(log n).

4.5 Authenticated Triconnectivity Queries
We now show how to authenticate operation areTriconnected(u, v) that reports whether there is a tricon-

nected component containing vertices u and v.
We extend the data structure of [12], where a biconnected graph (or component) G is associated with an

SPQR tree T that represents a recursive decomposition of G by means of separation pairs of vertices. Each
S-, P-, and R-node of T is associated with a triconnected component C of G and stores a separation pair
(s, t), where vertices s and t are called the poles of C. A Q-node of T is associated with an edge of G. Each
vertex v of G is allocated at several nodes of T and has a unique proper allocation node in T .

Our authenticated data structure augments tree T with V-nodes associated with the vertices of G and
connects the V-node of a vertex v to the proper allocation node of v in T . Also, it uses node attributes to
store the type (S, P, Q, R, or V) of a node of T and its poles. We can show that operation areTriconnected
can be reduced to a small number of pathLength and includesNodeType queries on the augmented SPQR
tree.
Theorem 6 Given a graph G with n nodes, there exists a dynamic authenticated data structure that supports
triconnectivity queries with the following performance: (i) query operation areTriconnected takes O(log n)
time, update operation makeVertex takes O(log n) time and update operation insertEdge takes O(log n) amor-
tized time; (ii) the query authentication information has size O(log n); (iii) the update authentication infor-
mation has size O(1); and (iv) the query verification time is O(log n).

5 Geometric Search
In this section, we consider authenticated data structures for geometric searching problems. Such data

structures have applications to the authentication of geographic information systems.

5.1 Fractional Cascading
Fractional cascading, presented in [6], is a general algorithmic technique used in a broad class of geometric

retrieval problems. It solves the iterative search problem which we briefly discuss.
Let U be an ordered universe and C= {C1, C2, ..., Ck} a collection of k catalogs, where each catalog Ci

is an ordered collection of ni elements chosen from U . For any element x ∈ U , the successor of x in Ci

is defined to be the smallest element in Ci that is equal or greater than x. We say that we locate x in Ci

when we find the successor of x in Ci. In the iterative search problem, given an element x ∈ U , we want to
locate x in each catalog in C. If n =

∑k
i=1 ni is the total number of stored elements, the fractional cascading

technique succeeds in achieving an O(k + log n) time complexity to solve the problem, while keeping the
storage linear.

The idea is to consider the catalogs as nodes in a connected graph (in the simplest case, the graph is a
path) and to preprocess them, so that pairs of neighboring catalogs are correlated. Then, one can perform a
binary search to locate x in some catalog, and then, using the underlying graph, to locate x in all the other
catalogs by moving along neighboring ones and spending O(1) time for each node transition.

C is associated to a graph as follows. Let G be a single source directed acyclic graph, that has bounded
degree, i.e., each node of G has both in-degree and out-degree bounded by a constant d. Each node v of G
is associated with a catalog Cv. G is called a catalog graph. Given G, we define Q(G) to be the family of all
connected subgraphs Q = (V, E) of G that contain s and do not contain any other node (except s) having
zero in-degree in Q. The iterative search problem for the catalog graph G can then be restated as: given an
element x ∈ U and a member Q = (V, E) of Q(G), locate x in Cv for all v ∈ V . We refer to Q as the query
graph.

Each catalog Cv is augmented to a catalog Av by storing some extra elements. In Av, elements in Cv

are called proper and the other (extra) elements are called non-proper. Augmented catalogs that correspond
to adjacent nodes of G are connected via bridges. Let e = (u, v) be an edge of G. A bridge connecting Au

and Av is a pair (y, z) associating two non-proper elements y and z, where y ∈ Au, z ∈ Av and y = z.
Elements y and z have references to each other. Each non-proper element y belongs to exactly one bridge.
Two neighboring catalogs Au and Av are connected through at least two extreme bridges that correspond
to non-proper elements +∞ and −∞ respectively.
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Figure 2: (a) The fractional cascading data structure over a path. Squares and dots represent non-proper
and proper elements respectively. Edge (u, v) has three blocks. (b) Inter-block hashing: DAG H defines the
second level hashing. For any query element x, Q traversal and target blocks define a tree T .

Each pair of neighboring bridges (y, z), (y′, z′) of edge (u, v) defines a block B which contains all elements
of Au and Av lying between the two bridges. If y′ ≤ y, then bridges (y, z) and (y′, z′) are respectively called
the higher and the lower bridge of B. The size |B| of a block B is the number of the elements (both proper
and non-proper) that it contains. Block sizes constitute a crucial parameter for the performance of the data
structure. If n is the total size of the original catalogs, i.e., the total number of proper elements, then, as
shown in [6], the total number of non-proper elements is O(n) only if block sizes are proportional to the
bounded degree d of G. Thus, in fractional cascading blocks are chosen to have bounded size both from
above and below: for each block B, α ≤ |B| ≤ β, where α and β are some constants proportional to d. Each
non-proper element z ∈ Av is associated (by storing a reference) to its next proper element proper(z) in Av,
i.e. its successor in the original catalog Cv. Figure 2 describes the data structure built over a path of G.

Suppose that we know the successor, say l, of x at an augmented catalog Au. In O(1) time, we can locate
x at Cu and, if e = (u, v) ∈ E, at Av: starting from l, we traverse Au moving to higher elements until a
bridge, say (y, z), is reached that connects to Av, we then follow that bridge and finally traverse Av moving
to smaller elements until x has been located. Bridge (y, z) is called the entrance bridge of catalog Au.

Given the query value x and a query graph Q, we initially perform a binary search to locate x at the
augmented catalog As, where s is the root of G, in time O(log n). Recall that the query graph Q always
contains the root s. Starting from node s, we traverse Q and visit all of its nodes once. Given Q, such a
traversal of Q can be performed by considering any topological order of Q. A move from a node u to an
adjacent one v, corresponds to the procedure described above: having located x in Cu, we locate x in Cv

in constant time. By traversing the query graph Q in this a way, we solve the iterative search problem in
O(kd + log n), where k is the number of vertices of Q and n is the total number of proper elements in the
catalogs of G.

5.2 Hashing over the data structure
Let h is a commutative cryptographic collision-resistant hash function. We assume that a set of rules

have been defined, so that h can operate on elements of catalogs, nodes of graph G and previously computed
hash values. The hashing scheme can be viewed as a two level hashing structure, built using the path hash
accumulator scheme: intra-block hashing is performed within each block defined in the data structure and
inter-block hashing of performed through all blocks of the data structure. In the sequel, we describe each
hashing structure.
Intra-block hashing: Consider any edge (u, v) of G, i.e., u is one of the parents of v. Also, consider any
two neighboring bridges (y′, z′) and (y, z) that define block B. Assume that z, z′ ∈ Av. We define P to be
the sequence of elements of B that exist in Av plus the non-proper elements of the corresponding bridges
that lie in Av. That is, P = {p1, p2, ..., pt}, a sequence in increasing order, where, if z′ ≤ z, p1 = z′ and
pt = z. We refer to P as the hash side of B. Using the path hash accumulator scheme, we compute the

9



www.manaraa.com

digest D(P ) of sequence P . For each element pi, we set N (pi) = {proper(pi), v} and in that way the path
hash accumulator can support authenticated membership queries and authenticated path property queries.
Here one such property of P is the corresponding node v.

We iterate the process for all blocks defined in the data structure: for each block B in the data structure
having a hash side P in Av, HB is the hash of v and the digest of the D(P ). We also define Bs to be a
fictitious block, the augmented catalog As. The hash side of Bs is all the block itself and in such a way the
hash value HBs is well defined and can be computed. All the path hash accumulator schemes used define
the first level hashing structure.
Inter-block hashing: The second level hashing structure is defined through a directed acyclic graph H
defined over blocks. That is, nodes of H are blocks of the data structure. Suppose that w is a parent of u
and u is a parent of v in G. If B is a block of an edge (u, v), then we add to the set of edges of H all the
directed edges (B, B′), where B′ is a block of edge (w, u) that shares elements from Au with B. Additionally,
if v is a child of the root s in G, then for all blocks B in edge (s, v) we add to the set of edges of H all the
directed edges (B, Bs). The construction of H is now complete. Bs is the unique root of H. Figure 2(b)
shows the graph H that corresponds to a path.

Each block (node) B of H is associated with a label L(B). If B is a leaf (sink) in H then L(B) = HB.
If B is the parent of blocks B1, B2, . . . , Bt in H, listed in arbitrary order, then L(B) equals the path hash
accumulation over B1, B2, . . . , Bt using N (Bi) = {Bi, HBi}. This hashing over H corresponds to the second
level hashing structure. Finally, we set D(D)= L(Bs) to be the digest of the whole data structure D, that
is signed by the source.

5.3 Answer authentication information
Given the hash scheme that we have developed over the catalog graph G, a query graph Q and a query

element x, we describe now what is the authentication information given to the user.
Let x be the query element and let v be any node of the query graph Q. Let sv be the successor of x in

Cv. In the location process, while locating x in the augented catalog Av, we find two consecutive elements
z and y of Av, such that z ≤ x ≤ y. Elements y and z may be either proper or non-proper. They are both
elements of a block B, such that the entrance bridge of Av is the higher bridge of B. We have that y is the
successor of x in Av and that sv = y, if y is proper, or sv = proper(y), if y is non-proper. We call y and B,
respectively, the target element and the target block of Av.

Two useful observations are that: (1) in the location process, the traversal of the query graph Q is chosen
so that each node of Q is visited once and (2) any two blocks visited by the location process (target blocks)
that correspond to incident edges in Q share elements of the common augmented catalog, and, thus, are
adjacent in graph H. It follows that all the target blocks define a subgraph T of H. T consists of the all
target blocks and the edges of H that connect neighboring target blocks (Figure 2(b)).
Lemma 7 For any query graph Q, graph T is a tree.

For any node v, let yv be the target element of Av and Bv the target block of Av. The answer authenti-
cation information will consist of:

1. Intra-block: for each node v of Q, the target element yv of Av and a verification sequence pv from yv

up to the path hash accumulation of the hash side of Bv, and
2. Inter-block: for every node (or target block) Bv of T that is not a leaf, the verification sequences from

every child of Bv in T up to the pash hash accumulation L(Bv).
Lemma 8 If n is the total number of proper elements in the catalogs of G and d is the bounded degree of G,
then for any query graph Q of k nodes, the size of the answer authentication information is O(log n+k log d) =
O(log n + k).

5.4 Verification of an answer
We assume that the answer given to the user is a set A = {(av, v) : v is node of G}, where av is supposed

to be the successor of x in Cv. The answer authentication information consists of two verification sequences
for each node (target block) of T : one intra-block and one inter-block. These sequences form a hash tree
in our two level hashing scheme. The verification process is basically defined by this hash tree. Intuitively,
an intra-block verification sequence of a target block Bv provides a local proof that av is the successor of x
in Cv, and then, all these local proofs are accumulated through inter-block verification sequences into the
signed digest.
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In particular, given the elements x, y, z, and a node v, if the predicates: 1) z ≤ x ≤ y, 2) y and z are
consecutive elements in Av, and 3) if x 6= y and y is non-proper then proper(y) is the next proper element of
y in Av, hold simultaneously, then they constitute a proof that the successor of x in Cv is element proper(y).
Such a proof must be given for every v of Q.

Given A, x and the answer authentication information, the user first checks to see if there is any incon-
sistence between values av and yv for every v of G, i.e. if av 6= yv, if yv is proper, or if av 6= proper(yv)
otherwise. If there is at least one inconsistence, the user rejects the answer. Otherwise, all that is needed is
to verify the signed digest D(D) of the data structure. Observe, that the user possesses all the data needed
for the computation of the signed digest.
Lemma 9 If n is the total number of proper elements in the catalogs of G, then for any query graph Q of k
nodes, the answer verification time is O(log n + k log d) = O(log n + k), where d is the bounded degree of G.

If the digest is verified, then based on the collision-resistance property of the hash function h, the user
has a proof that the answer is correct: for each v of G, the user can verify all the three conditions previously
discussed. A faulty answer can lead to a forged proof only if some collisions of h have been found. Thus,
the security of our scheme is reduced to the collision-resistance property of h.
Lemma 10 For any catalog graph G of k nodes and of total size n, both intra-block and inter-block hashing
schemes can be computed in O(n) time using O(n) storage.
Theorem 11 Given a catalog graph G of bounded degree d and of total size n, the authenticated fractional
cascading data structure D for G solves the authenticated iterative search problem for G with the following
performance : D can be constructed in O(n) time and uses O(n) storage; given an element x and a graph
query Q with k vertices, x can be located in every catalog of Q in O(log n + k) time; and the answer
authentication information has size O(log n + k); the answer verification time is O(log n + k).

5.5 Applications
Our authenticated fractional cascading scheme can be used to design authenticated data structures for

various fundamental two-dimensional geometric search problems, where iterative search is implicitly per-
formed (see [7]). In all of these problems, the underlying catalog graph has degree bounded by a small
constant. In the following, n denotes the problem size.
Theorem 12 There is an authenticated data structure for answering line intersection queries on a polygon
that can be constructed in O(n log n) time and uses O(n log n) storage. Denoting with k the output size,
queries are answered in O(log n+k) time; the answer authentication information has size O((k+1) log n

k+1 );
and the answer verification time is O((k + 1) log n

k+1 ).
Theorem 13 There are authenticated data structures for answering ray shooting and point location queries
that can be constructed in O(log n) time and use O(n log n) storage. Queries are answered in O(log n) time;
the answer authentication information has size O(log n); and the answer verification time is O(log n).
Theorem 14 There are authenticated data structures for answering orthogonal range search, orthogonal
point enclosure and orthogonal intersection queries that can be constructed in O(n log n) time and use
O(n log n) storage. Denoting with k the output size, queries are answered in O(log n + k) time; the an-
swer authentication information has size O(log n + k); and the answer verification time is O(log n + k).
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Appendix
Proof of Lemma 1 Suppose Q is the set of all possible queries property() on p. For each q=property(p̄(v, u))
consider the set A(p̄) of allocation nodes in T (p) of subpath p̄ = p̄(v, u). For a tree node w, w ∈A(p̄) if
the leaves of the subtree defined by w are all nodes of p̄ but the same is not the case for w’s parent, if
any. Observe that each w ∈A(p̄) corresponds to a subpath of path p̄. There are O(n) allocation nodes for
subpath p̄ that can be found in O(hT ) time by tracing the leaf-to-root tree paths in T (p) from v and u up
to r. Since, the path property P satisfies the concatenation criterion, we have that the path property P(p̄)
can be computed by using the tree structure and by applying O(hT ) times the concatenation function F .

Clearly, the answer given to the user is the property P(p̄). For any node u of T (p), let (u1, . . . , uk) be
the node-to-root tree path connecting u with the root r of T (p). We define the verification sequence of u to
be the sequence V(u) = (s1, s2, ..., st), where sj , 1 ≤ j ≤ k, is the label of the sibling of node uj.

The answer authentication information consists of three parts:
• For each allocation node w of subpath p̄ = p̄(v, u), the property P(w); these properties are given as

a sequence (α1, ..., αm), such that the set of leaf nodes of any allocation nodes αi and αi+1 forms a
subpath of p̄.

• For each w ∈A(p̄) the labels of its children, if they exit; and the label of the siblings of the left most
and right most allocation nodes of p̄ = p̄(v, u).

• If z is the least common ancestor of v and u, the verification path of z.
Given the answer authentication information, the user is able to proof the validity of the answer P(p̄).

In particular, the user first uses sequence (α1, ..., αm) to recompute P(p̄), by repeatedly applications of
the concatenation function F . If P(p̄) is not confirmed, the user rejects the answer. Otherwise, the user
completes the verification process by recomputed the path hash accumulation.

Since, head(p)∈P(p) and tail(p)∈P(p), we achieve the desired security result.
For any property() query, we proceed as above; just observe that property(v) corresponds to a property(v,v).
For any locate() query, we locate the target node v by performing a top-down search into Tp starting

from the root: at a node u with children w1 and w2, the path selection function σ is used to select either
the path that corresponds to w1 or the path that correspomd to w2. Then answer is the located node v and
the proof is the proof that corresponds to a property(v,v) operation. 2

Proof of Theorem 2 Let size(v) denotes the number of nodes in the subtree defined by v and let u the
parent node of v. Edge e = (u, v) is called heavy if size(u) > size(v)/2. The edge labeling of a dynamic tree
T of n nodes with root w and n nodes, such an edge is labeled solid only if it is heavy, has the following
important property: for any node u of T there are at most log n dashed edges on the path from u to w.

We use such an edge labeling, for the partition of T into solid paths. Consider the collection of path Π
that correspond to the final tree F (after the edge paths and the root path have been added). Each path
p in Π is implemented as a biased binary tree Tp, where node weights are defined using function size. We
consider the weight w(v) of node v to be either a node or a path property (depending on if v is leaf node
in Tp or not). If p is a path having no child path (µp leaf in F), then w(v) = size(v). Otherwise (µp not
leaf in F), then w(v) = w(u1) + w(u2), if v is internal node in Tp and u1,u2 children of v. Otherwise, v is
a node of path p. If v = head(p) and p is solid, then w(v) = w(u1) + w(u2), where u1,u2 the children of v
in T (through dashed edges). If v 6= head(p) and p is solid, then w(v) = w(u) + 1, where u is the unique
dashed child of v and w(u) = 0, if no such child exists. If p is dashed, w(v) = w(u) + 1, where u is the node
connected with v with the corresponding dashed edge. If p is root path, again w(v) = w(u) + 1, where u is
the root of the corresponding tree root.

Using the above biasing, it can be shown that any leaf-to-root path in F , when performed through the
individual biased trees Tps has length O(log n). The proof is based in the analysis in [28]. Observe, that all
operations correspond to accessing (and modifying) paths of this kind. In particular:
Updates Operations link() and cut() can be implemented in O(log n) time by modifying only O(log n)
path hash accumulators and by by examining, modifying and restructuring only O(log n) nodes in total.
Restructuring means connecting a node to new children. Observe that the path property P satisfies the
concatenation criterion. Our scheme works by, every time a node v is restructured, recalculating L(v), which
can be done in O(1) time, since the values of the children and neighbors of u are known. Consequently, our
update operations can be performed in O(log n) time.
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Queries The first step in processing query property(u, v) is to determine if nodes u and v are in forest F .
We can use the authenticated data structure of [15] that supports containment queries in O(log n) time with
responses of length O(log n).

Given nodes v and u in F , the path property query is performed by accessing three multipaths, i.e., three
paths that is the concatenation of subpaths of paths in Π according the hierarchy induced by F . Consider
the least common ancestor µl of µv and µu in tree F (µl may overlap with µv and/or µu and l is the actual
least common ancestor considering the individual trees). Let Π(v), Π(u) be the multipaths from µv, µu

to µl and Π(l) be the multipath from µl to the root of the tree implementing π(ω). Following Π(v) and
Π(u), we compute the answer A(v, u) considering the allocation nodes of each path hash accumulator visited.
Similarly, we provide property subproofs proof(Π(v)), proof(Π(u)) for each path hash accumulator that is
visited. Finally, following Π(l) up to the signed root, we compute the multipath verification sequence V(l)
that allows the user to recalculate the signed hash value given A(v, u), proof(Π(v)) and proof(Π(u)).

By the biased scheme used over F , the set of allocation nodes is O(log n), thus, the size of the answer
A(v, u) and the proof (V(l),proof(Π(v)),proof(Π(u))) is O(log n). The verification time is also O(log n).
Security The hashing scheme is based on the path hash accumulation scheme. By allowing neighboring
(in F) paths to share information (properties) we achieve the desired security results. 2

Proof Sketch of Theorem 3 Both operations correspond to authenticating a path property. areConnected
corresponds to the existence or not of some node of the root path π(ω) in the path in F connecting v and u
(there is always such a path). This can be easily expressed by assigning some unique id value to every path
in Π. The same idea is applied for includesNodeType operation. pathLength can be achieved by including the
path attribute P (v) = #number of leaves in subtree defined by v in path property P(v). path queries are
answered by first performing a areConnected query. If there is a path, it can be found by including all leaf
nodes of the subtree T (v) defined by node v in path property P(v) and answering a path property query.
P(v) = O(size(T (v))) and, thus, the introduced complexity is O(log n + k), where k is the length of path 2

Proof Sketch of Lemma 7 Consider the topological order used to define the traversal of the query
graph G. This topological order defines a directed subtree TQ of Q. There is a one-to-one correspondence
between edges of TQ and target blocks, i.e. between edges of TQ and nodes of T . 2

Proof of Lemma 8 The hash side of Bs has size |As| = O(n) and the hash side of any other target block
has size at most β = O(d). Thus, the intra-block answer authentication information consists of k verification
sequences, k− 1 of length O(log d) and one of length O(log n), and, thus, has size O(log n+ k log d) size. For
the inter-block answer authentication information, recall that G and, thus, both Q and TQ, have out-degree
bounded by d and that every target block can share elements with at most β = O(d) other target blocks.
Thus, T has in-degree bounded by O(d). That is, all, but L(Bs), the second level path hash accumulations
are built over sequences of length O(d). L(Bs) is built over at most dn blocks that share elements with
As. Observe that there is a one-to-one correspondence between every inter-block verification sequence and
an edge in T . It follows that the inter-part answer authentication information consists of k − 2 verification
sequences of size log d and one of size log n, thus, has O(log n + k log d) size. In total, since d is a constant,
the answer authentication information is of size O(log n + k). 2

Proof Sketch of Lemma 9 Recall that the verification time of a path hash accumulator is proportional
to the size of the verification sequence.

2

Proof Sketch of Lemma 10 G has bounded in-degree by d = O(1) and every target block can share
elements with at most β = O(1) other blocks. Moreover, the path hash accumulation of a sequence of length
m can be computed in O(m) time and space. 2
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